Search results for " thioflavin T"

showing 10 items of 14 documents

Protective Effects of L- and D-Carnosine on R-Crystallin Amyloid Fibril Formation: Implications for Cataract Disease

2009

Mildly denaturing conditions induce bovine ?-crystallin, the major structural lens protein, to self-assemble into fibrillar structures in vitro. The natural dipeptide L-carnosine has been shown to have potential protective and therapeutic significance in many diseases. Carnosine derivatives have been proposed as potent agents for ophthalmic therapies of senile cataracts and diabetic ocular complications. Here we report the inhibitory effect induced by the peptide (L- and D-enantiomeric form) on ?-crystallin fibrillation and the almost complete restoration of the chaperone activity lost after denaturant and/or heat stress. Scanning force microscopy (SFM), thioflavin T, and a turbidimetry ass…

CrystallinCircular dichroismAmyloidCarnosinePeptideMicroscopy Atomic ForceBiochemistryCataractLens proteinRats Sprague-Dawleychemistry.chemical_compoundOrgan Culture TechniquesCrystallinChaperone activityAnimalsalpha-CrystallinsSFM Scanning Force Microscopychemistry.chemical_classificationDipeptideCD Circular DichroismThT Thioflavin TCalorimetry Differential ScanningDSC Differential Scanning CalorimetryCircular DichroismCarnosineStereoisomerismIn vitroeye diseasesRatsSpectrometry FluorescencechemistryBiochemistryHEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acidThioflavinCattleFemaleSpectrophotometry Ultravioletsense organsAmyloid fibrilMolecular Chaperones
researchProduct

AMYLOID AGGREGATION IN CONCANAVALIN A AT HIGH PH STUDIED BY LIGHT SCATTERING, FLUORESCENCE AND CIRCULAR DICHROISM SPECTROSCOPY

2008

DLS Circular Dichroism thioflavin T
researchProduct

Amyloid Fibrils Formation in Concanavalin A studied by Dynamic Light Scattering and Fluorescence techniques

2007

DLS Thioflavin T Concanavalin A
researchProduct

Phasor-FLIM analysis of Thioflavin T self-quenching in Concanavalin amyloid fibrils

2020

The formation of amyloid structures has traditionally been related to human neurodegenerative pathologies and, in recent years, the interest in these highly stable nanostructures was extended to biomaterial sciences. A common method to monitor amyloid growth is the analysis of Thioflavin T fluorescence. The use of this highly selective dye, diffused worldwide, allows mechanistic studies of supramolecular assemblies also giving back important insight on the structure of these aggregates. Here we present experimental evidence of self-quenching effect of Thioflavin T in presence of amyloid fibrils. A significant reduction of fluorescence lifetime of this dye which is not related to the propert…

Fluorescence-lifetime imaging microscopyAmyloidFLIMHistologyAmyloid02 engineering and technologyProtein aggregationprotein aggregation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineself-quenchingmental disordersamyloid fibrilConcanavalin Afluorescence lifetimeHumansBenzothiazolesInstrumentationFluorescent DyesInclusion BodiesQuenching (fluorescence)biologyStaining and LabelingChemistryOptical ImagingPhasorNeurodegenerative Diseases030206 dentistry021001 nanoscience & nanotechnologyFluorescenceSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Medical Laboratory TechnologyMicroscopy FluorescenceConcanavalin APhasorbiology.proteinBiophysicsThioflavin TThioflavinamyloid fibrils Concanavalin A FLIM fluorescence lifetime Phasor protein aggregation self-quenching Thioflavin TAnatomy0210 nano-technology
researchProduct

Nouvelles perspectives concernant la structure et la fonction du domaine carboxyl terminal de Hfq

2015

Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent β-sheets within individual protomers to…

IDP intrinsically-disordered proteinslcsh:Lifelcsh:QR1-502sub-membrane macromolecular assemblyPlasma protein bindingsRNA small non-coding RNABiochemistrylcsh:Microbiologyamyloid fibrilsProtein biosynthesis0303 health sciences[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]Escherichia coli Proteins030302 biochemistry & molecular biologyHfqCTRp Hfq C-terminal peptideFTIR Fourier transform infrared spectroscopyNTR N-terminal regionCompartmentalization (psychology)Cell biology[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsRNA Bacterialsmall non-coding ribonucleic acid (RNA)BiochemistryFSD Fourier self-deconvolutionTransfer RNAAmyloid fibrilProtein BindingBiophysicsBiologyHost Factor 1 Protein03 medical and health sciencesEscherichia coliThT thioflavin T[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyProtein Structure QuaternaryncRNA regulatory non-coding RNAPost-transcriptional regulationMolecular Biology030304 developmental biologyOriginal PaperC-terminusRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyCell Biologycellular compartmentalizationWT wild-typeProtein Structure Tertiarylcsh:QH501-531Host Factor 1 ProteinCTR Hfq C-terminal regionribonucleic acid (RNA) processing and degradationBiophysicpost-transcriptional regulationBioscience Reports
researchProduct

Self-Organization Pathways and Spatial Heterogeneity in Insulin Amyloid Fibril Formation

2009

At high temperature and low pH, the protein hormone insulin is highly prone to form amyloid fibrils, and for this reason it is widely used as a model system to study fibril formation mechanisms. In this work, we focused on insulin aggregation mechanisms occurring in HCl solutions (pH 1.6) at 60 degrees C. By means of in situ Thioflavin T (ThT) staining, the kinetics profiles were characterized as a function of the protein concentration, and two concurrent aggregation pathways were pointed out, being concentration dependent. In correspondence to these pathways, different morphologies of self-assembled protein molecules were detected by atomic force microscopy images also evidencing the prese…

In situAmyloidHot Temperaturemedicine.medical_treatmentKineticsNucleationMicroscopy Atomic ForceFibrilchemistry.chemical_compoundMicroscopyMaterials ChemistrymedicineAnimalsInsulinBenzothiazolesPhysical and Theoretical ChemistryInsulin Amyloid Fibrils Secondary Nucleation Thioflavin T (ThT) Scanning Force Microscopy (SFM) Spatial HeterogeneityChemistryInsulinfluorescence spectroscopyFluorescenceSurfaces Coatings and FilmsThiazolesBiochemistryBiophysicsCattleThioflavinHydrochloric AcidProtein aggregation
researchProduct

Designing trehalose-conjugated peptides for the inhibition of Alzheimer’s Aβ oligomerization and neurotoxicity

2008

Neurotoxicity Alzheimer Amyloidsbeta-sheet breaker peptides • amyloid-beta • trehalose • SFM • neuronal cultures • thioflavin T
researchProduct

Thioflavin T templates amyloid β(1–40) conformation and aggregation pathway

2015

Aβ(1-40) peptide supramolecular assembly and fibril formation processes are widely recognized to have direct implications in the progression of Alzheimer's disease. The molecular basis of this biological process is still unknown and there is a strong need of developing effective strategies to control the occurring events. To this purpose the exploitation of small molecules interacting with Aβ aggregation represents one of the possible routes. Moreover, the use specific labeling has represented so far one of the most common and effective methods to investigate such a process. This possibility in turn rests on the reliability of the probe/labels involved. Here we present evidences of the effe…

Protein StructureSecondaryAβ(1–40) peptideAmyloidProtein ConformationMolecular Sequence DataBiophysicsSupramolecular chemistryMolecular Dynamics SimulationProtein aggregationProtein Aggregation PathologicalBiochemistryProtein Structure SecondarySupramolecular assemblyProtein Aggregateschemistry.chemical_compoundProtein structureAlzheimer DiseasePathologicalSecondary structureAβ(1-40) peptideHumansBenzothiazolesAmino Acid SequenceFluorescent DyesAmyloid beta-PeptidesProtein StabilityOrganic ChemistryAlzheimer's diseaseProtein AggregationSmall moleculePeptide FragmentsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Peptide ConformationAlzheimer's disease; Aβ(1–40) peptide; Protein aggregation; Protein conformation; Secondary structure; Thioflavin T; Alzheimer Disease; Amino Acid Sequence; Amyloid beta-Peptides; Fluorescence Recovery After Photobleaching; Fluorescent Dyes; Humans; Molecular Dynamics Simulation; Molecular Sequence Data; Peptide Fragments; Protein Aggregates; Protein Aggregation Pathological; Protein Conformation; Protein Multimerization; Protein Stability; Protein Structure Secondary; ThiazolesThiazolesBiophysicBiochemistrychemistryThioflavin TBiophysicsThioflavinProtein MultimerizationFluorescence Recovery After PhotobleachingBiophysical Chemistry
researchProduct

Carnosine inhibits amyloid fibril formation of alpha crystallin under destabilizing conditions

2008

SFM Scanning Force MicroscopyCD Circular DichroismThT Thioflavin THEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acidDSC Differential Scanning Calorimetry
researchProduct

Inhibition of α-crystallin amyloid fibrils formation by carnosine

2008

SFM Scanning Force MicroscopyCD Circular DichroismThT Thioflavin THEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acidDSC Differential Scanning Calorimetry
researchProduct